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ABSTRACT 

Characteristics of groundwater flow in porous 
media can be heavily influenced by local anisot-
ropy in intrinsic permeability. Therefore, the 
ability of a numerical model to properly simulate 
anisotropy is vital in designing a well-calibrated 
model capable of predicting the response of a 
system under stress. A new numerical scheme 
for fully tensorial treatment of anisotropic flow 
within model layers (2D) has been designed and 
implemented into the TOUGH family of simu-
lators. Previously, the TOUGH simulators were 
only able to accurately resolve anisotropic flow 
in two cases, i.e., when the connections between 
two gridblocks were either along the principal 
direction or along a streamline. 
 
A simulation using the new anisotropic scheme 
is activated by a MOP parameter and the exist-
ence of two new data blocks in the TOUGH 
input file. The first block (ANISO) contains the 
gridblock name, coordinates, permeability 
values along the first and second principal axes, 
and the angle of the principal direction from the 
local x-axis. The second block (SEGST) lists the 
gridblocks for each connection needed to calcu-
late the additional flow gradients in the Jacobian 
matrix, along with a vector along the interface 
between the neighboring gridblocks. 
 
Testing has shown that the new scheme adds 
approximately 16% to the execution time of 
multiphase (water and steam) simulations using 
the TOUGH2 simulator. In order to account for 
anisotropy between two gridblocks, flow from 
neighboring gridblocks must be incorporated 
into the calculations as well, resulting in more 
off-diagonal elements in the Jacobian matrix. 
About 33% of the execution time is used for 
constructing the Jacobian matrix elements, and 

another 25% is used for sorting the array 
containing the matrix elements during each iter-
ation. 
 
The new scheme has been rigorously tested 
against simple theoretical solutions to Darcy’s 
law, as well as more complicated examples 
solved by numerical software packages with 
anisotropic flow capabilities. In all cases, a good 
agreement with the new scheme has been found. 
 
This work has been performed as a part of a 
MoU (Memorandum of Understanding) between 
the Earth Sciences Division of Lawrence 
Berkeley National Laboratory and Vatnaskil 
Consulting Engineers. 

INTRODUCTION 

Here, we present a short description of the 
numerical scheme that has been implemented 
into the TOUGH2 simulator. For simplification, 
the emphasis will be on horizontal two-dimen-
sional flow. 
 
Consider a general mesh as shown in Figure 1. 
The goal is to calculate the #ow through the face 
st connecting elements (gridblocks) O and B by 
including full permeability anisotropy. The mesh 
was generated with a Voronoi tessellation (de 
Berg, 2000) which guarantees that the line 
connecting the interior "central" points O and B 
will be perpendicular to the line st and will be 
exactly halved by that line. Note, on the other 
hand, that the line segment st will in general not 
be halved by the line OB, and the line OB may 
indeed intersect st at a point exterior to the 
segment st. 
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Figure 1. A general Voronoi mesh. The aim is to 

calculate the flow through the line 
segment st connecting points O and B. 

The figure defines the points O, B, C, E, A, F, 
which are the centers of elements surrounding 
the edge (interface area) in question. Points s 
and t are defined as the vertices of the edge. 
Elements C and E will always be in contact with 
edge st through vertex s, and elements A and F 
will always be in contact through vertex t. 
Elements A and C will always be the elements 
sharing an edge with Element O. Elements E and 
F will always be elements sharing an edge with 
Element B. When one vertex of the edge st is on 
an outer boundary of the region, it will always 
be vertex t, and thus vertex s will be inside the 
region. Moreover, in such cases, elements A and 
F will not exist. 
 
Within our implementation, all information 
pertaining to the elements are stored in arrays in 
the following order: O, B, C, E, A, F. The 
inclusion of the additional points, A, C, E, and 
F, serves to obtain an approximation of the 
gradient for the pressure along the edge st, 
which in turn allows us to take into account the 
anisotropy when calculating the flow across the 
edge. This approximation of the gradient is a 
linear combination of the approximate gradients 
in the triangular planes OBE, OBF, BOA, and 
BOC. Following this setup, the flow through st 
can be compactly represented as (Sigur"sson, 
2009)  
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with kr, !, and µ as the relative permeability, 
density, and viscosity, respectively. The P vector 
represents pressure at each element center. As an 
example, an element in the vector $ is of the 
form  
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Here, h is the model or layer thickness and kx, ky, 
kxy, the elements of the permeability tensor, are: 
 
 !! ! !!! !"#! ! ! !!! !"#! !         (3) 
 !! ! !!! !"#! ! ! !!! !"#! !         (4) 
 !!" ! !!! ! !!! !"# ! !"# !         (5) 
 
where kn and kt (Strack, 1989) are the 
permeability values along the principal 
directions and ! is the angle of the first principal 
direction from the x-axis. At the boundaries, the 
$ values are calculated in a different manner. 
With vertex t being on the boundary (see Figure 
1), triangles OAB and OFB are missing. 
Therefore, the contributions from triangles OCB 
and OEB are doubled. When the vertices are in 
contact with only three elements, the C term is 
equal to E and A is equal to F. 

CHANGES TO THE CODE 

Subroutine INPUT 
Two sections have been added to subroutine 
INPUT: ANISO (label 3200) and SEGST (label 
3300). New common blocks have been added to 
the program to store the extra data required by 
the anisotropic method, including the element 
coordinates, the permeability tensors, and the 
interface area vectors st. When the anisotropy 
method is used, up to six elements may 
contribute to the flow along a connection, as 
opposed to only two elements when the isotropic 
method is used. New common blocks have been 
added to subroutine INPUT and to the program 
to store data for the extra elements. Note that for 
a connection, the elements in arrays ELEM1, ... 
and NEX1, ... must correspond, respectively, to 
elements O, B, C, E, A, F. When close to a 
boundary, ELEM5 and ELEM6 shall be left 
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blank, and NEX5 and NEX6 will be set to zero 
by the program. 
 
Two new sections were added to the subroutine 
to parse the new input blocks, ANISO and 
SEGST. The format of the new blocks is 
discussed later in this article. 

Subroutine ANISOTROPY 
Subroutine ANISOTROPY is triggered when a 
block ANISO is detected in the input. It is 
possible, though, to force the run in either 
isotropic or anisotropic mode by means of a 
MOP parameter. The new subroutine is called 
from subroutine MULTI to supplant the loop 
over connections implemented there. The loop 
has been implemented again in the new 
subroutine, ANISOTROPY, and has a structure 
similar to that of the original code. It includes a 
flux loop to calculate the finite differences 
required to build the Jacobian matrix of the 
residuals (Pruess, 1999). Including anisotropy 
introduces additional non-zero elements into the 
Jacobian matrix. For instance, in the isotropic 
case, the Jacobian element for the neighboring 
elements B and C is zero. In the anisotropic 
case, it is no longer zero, since the flow between 
elements O and B depends on the pressure in 
Element C. Note, however, that these additional 
elements in the Jacobian only depend on 
physical parameters in the regions surrounding 
points O and B, since the additional points only 
serve to obtain an approximation of the gradient 
of the pressure along the edge st. Therefore, no 
extra finite difference is required to compute the 
new Jacobian elements, since the flow across 
segment st is a linear function of the pressure in 
elements C, E, F, A (i.e., in Equation 1, the 
permeability, viscosity, and density are functions 
of PO and PB  but not of PC, PE, PF, and PA). 

ADDITIONAL INPUT 

Two extra data blocks are required to run a 
simulation using anisotropy. Throughout this 
work, AMESH (Haukwa, 1998) was used to 
generate the necessary input for TOUGH2. An 
external program was then used to convert the 
output data produced by AMESH into input data 
needed for anisotropy.  

Block ANISO 
Block ANISO has the following structure:  

- element names (columns 1 to 5), 

- element x, y, and z coordinates (6 to 20, 21 to 
35, 36 to 50),  

- permeability along first and second principal 
axes (51 to 60, 61 to 70),  

- angle between first principal axis and axis x 
(71 to 80).  

Block ANISO must always come after block 
ELEME, and the elements must be in the same 
order. 

Block SEGST 
Block SEGST has the following input:  

- names of elements O, B, C, E, A, F (columns 
1 to 30, five characters each),  

- x and y coordinates of vector st (31 to 45, 46 
to 60).  

Block SEGST must come after block CONNE, 
and the connections must be in the same order. 
A line with four elements (A and F blank) 
indicates that the connection is next to a 
boundary. A line with two elements means that 
the connection is parallel to the z axis, which 
will always be treated as the vertical (as well as 
a principal) axis. Note that in such a case, the 
vector st is not used by the program. An 
interface area vector st must never be zero.  
 
Care must be taken that block SEGST is 
consistent with the data provided in block 
CONNE. Connections in the xy plane must have 
their ISOT number set to 1 or 2. These 
connections will be treated anisotropically using 
the permeability provided in input block 
ANISO. Connections parallel to z must have 
their ISOT number set to 3. Those connections 
will be treated isotropically using the 
permeability provided in input block ROCKS. 
BETAX, the cosine of the angle between the 
connection and the gravity axis, must be zero for 
the xy connections (ISOT 1 or 2), and 1 or -1 for 
the z connection (ISOT 3). Parameters PER(1) 
and PER(2) in block ROCKS are not used in the 
simulation, since the permeability values for 
connections in the xy plane are defined in the 
ANISO block.  
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PROFILING AND PERFORMANCE 

A test performed on a hypothetical multiphase 
system reveals that the anisotropic method is 
about 16% slower than the original isotropic 
method. About 25% of the computation time is 
used in sorting the array containing the Jacobian 
elements (array CO). Since array CO is always 
filled in the same disordered manner, 
computation time could be reduced by 
implementing a system that memorizes the 
positions of the elements after sorting. This 
would require the array to be ordered only once 
at the beginning of the simulation. 
 
In the original isotropic implementation of 
TOUGH2, array CO is sorted inside the solver. 
Our anisotropic implementation requires the 
array to be sorted earlier. To prevent the solver 
from attempting to sort the array again, a 
Boolean parameter SORTED was added to the 
solver subroutines. The parameter is used to 
inform the solver that it is unnecessary to sort 
the array again. This new feature reduces 
computation time by several percentage points. 
 
About 33% of the computation time is spent in 
subroutine ANISOTROPY, which contains the 
essential lines of code needed to implement 
anisotropy, excluding the sorting algorithm. 
Averaging of the absolute permeability is 
performed according to the definitions in 
MOP(11).  

EXAMPLES 

Four examples are presented in this section. 
Each one validates the correct implementation, 
or re-implementation when necessary, of 
different sections and/or features of the program. 
To begin, we shall discuss the comparison with 
the Theis solution in order to verify our 
approach.  

Comparison with Analytical Theis Solution 
The Theis solution gives the drawdown in an 
infinite homogeneous aquifer under constant 
pumping (Bear, 1979). It is represented here in 
the form of pressure change as a function of 
several parameters that are either TOUGH2 
input parameters or parameters generated by the 
equation of state module (EOS1) in TOUGH2: 
  

 !! ! !
!!"#

!! !
!!"

!!! !
!
!!
!!!  (5) 

 
Here, T is the aquifer transmissivity (m2/s), S is 
the aquifer storage coefficient, Q is the 
production rate (kg/s), t is the time (s) and u1 and 
u2 are the coordinates in the principal coordinate 
system. When the coordinates differ from the 
canonical x and y system, the coordinates must 
be rotated according to:  
 
 !! ! ! !"# ! ! ! !"# ! (6) 
 !! ! !! !"# ! ! ! !"# ! (7) 
 
with " as the angle between u1 and x. The well 
function, W, is in this case the exponential 
integral (Abramowitz et al., 1965) 
 
 ! ! ! !!

!
!
!! !" (8) 

 
A test was performed using a simple one-layer 
square mesh of size 5000%5000 m2 consisting of 
elements of size 50%50 m2. Using a mesh 
consisting of regular hexagonal elements with 
80 m side length provided identical results. A 
sink was attached to an element close to the 
center, producing 10 kg/s of water. The model 
consisted of an anisotropic rock having 
permeability values along its principal axes of 
10-14 and 10-15 m2. The angle between the first 
axis and the x axis was set to 0.2& rad. The 
porosity was set to 0.1. Initial pressure was set to 
50 bar and initial temperature to 220°C for all 
elements.  

 
Figure 2. Comparison between TOUGH2 (including 

anisotropy) and the Theis solution for 
anisotropic aquifer at four different points. 
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The pressure was recorded at four different 
points within the model during a run of 50 days. 
The results are shown in Figure 2. A contour 
plot of the simulated pressure across the model 
area at the end of the 50 days is shown in Figure 
3. The location of the four different calibration 
points is also shown in Figure 3.  
 

 
Figure 3. Areal plot of simulated pressure contours 

generated by TOUGH2 after 50 days. The 
red symbols show the locations of the four 
calibration points represented in Figure 2. 

The results of the TOUGH2 simulation plotted 
in Figure 2 show good agreement with the Theis 
solution. As the simulation time progresses, the 
curves begin to diverge due to the no-flow 
boundaries used in the TOUGH2 model. The 
Theis solution assumes an aquifer of infinite 
extent. The discrepancy becomes more 
prominent closer to the boundary as time passes.  
 
The comparison with the Theis solution 
confirms the correct behavior of the method and 
implementation presented here. 

Immobile Water 
In this and all subsequent examples, the 
calculations were performed on a rectangular 
mesh grid with 50 m between two adjacent 
points and a total area of 4750%4750 m2. 
 
Here, the new implementation is compared to 
the original TOUGH2 code by setting the 
permeability values to kx = 10-13 m2, ky = 10-11 m2 
and rotating the principal axes along x and y 
axes to allow for direct comparison. The 

following example represents a two-phase 
system in which the water phase is immobile 
due to a low saturation level (below the residual 
saturation) (Grant, 1982). A producing well 
located at (x,y) = (0,0) m produced at a constant 
rate of 30 kg/s. All boundaries are assumed to be 
impermeable (no flow). 
 

 
Figure 4. Areal plot of simulated pressure contours 

generated by TOUGH2 after five days of 
producing at a constant rate of 30 kg/s. 
The dotted circles represent the pressure 
decline cone without anisotropy. 

 
Figure 5. Comparison between the original and 

anisotropic methods in TOUGH2 for a 
system containing both liquid water and 
steam. The principal permeability axes are 
along x and y and the mesh rectangular to 
allow comparison between the two 
different methods. 

Figure 4 shows the simulated pressure contours 
after five days of production. Figure 5 shows the 
comparison of pressure at two different 
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calibration points within the mesh. The results 
produced by the two different methods show that 
the methods agree to at least three significant 
digits at all times. 

Five Different Regions 
The following example compares TOUGH2 
with the single-phase flow program Aqua3D 
(http://www.vatnaskil.is/softwaredevelopment/a
qua3d-). Aqua3D is based on a finite element 
approximation with basis function on a 
triangular mesh. Aqua3D can properly handle 
anisotropy. Great care was taken to make the 
two simulations (TOUGH2 and Aqua3D) as 
similar as possible. Some discrepancy is to be 
expected, since the physical properties 
calculated by the EOS1 module may not exactly 
correspond to the constant values assumed by 
Aqua3d at all times. 
 
This example consisted of a model containing 
five regions, each with different physical rock 
properties. The mesh was divided into a 
background region plus four additional 
rectangular regions (Figure 6). A producing well 
was located at (x,y) = (0,0) m and produced at a 
constant rate of 30 kg/s. 
 

 
 

Figure 6. Hypothetical reservoir consisting of five 
different rock types.  

The different rock properties were described by 
four parameters: porosity, permeability (along 
the primary principal axis), permeability ratio 
(between the two principal axes), and angle 
between the primary axis and the abscissa.  

 
Figure 7. Comparison between TOUGH2 and 

Aqua3D for a model containing five 
different regions of anisotropic rock. 

In each of the rectangular regions, one parameter 
differs from the background rock. The results of 
the simulations are presented in Figure 7 and 
Figure 8. Figure 7 shows the simulated pressure 
from TOUGH2 and Aqua3D at the four 
calibrations points. 
 
Figure 8 shows simulated pressure contours at 
the end of the TOUGH2 run.  
 

 
Figure 8. Areal plot of simulated pressure contours 

generated by TOUGH2 after 100 days. 
Black contour lines are Aqua3D results. 
The four symbols show the locations of 
the calculation points represented in 
Figure 7. 

Although the methods employed in the two 
programs are different, Aqua3D and TOUGH2 
gave similar results. This test validates our 
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approach in the case of nonhomogeneous 
anisotropic rock. 

Multiple Layers 
Previous test examples have all been single-
layer systems. The following multilayer example 
was used to test whether the vertical flow (flow 
between horizontal layers), which includes the 
effects of gravity, has been correctly 
implemented into the new section of code 
handling anisotropy. As mentioned above, the 
solution used to implement anisotropy is a two-
dimensional solution, and therefore the vertical 
flow is calculated in exactly the same way as in 
the original isotropic method. The vertical axis 
is therefore always a principal axis.  
 
To allow for comparison between the original 
isotropic and the new anisotropic methods, the 
test example chosen is anisotropic but its 
principal axes are along x, y, and z. The same 
mesh as before was used, but the vertical depth 
was split into 10 layers of varying thickness 
(layers A–J). Initially, a run was performed 
without any sources or sinks to allow the 
pressures, under the effect of gravity, to reach 
equilibrium. Then, two sinks and one source 
were added to the system. The first sink 
(production rate of 50 kg/s) was added to an 
element in Layer C (Figure 9).  
 

 
Figure 9. Top view of the multi-layer system 

showing the horizontal positions of the 
probes, sinks and source. 

The second sink (production rate of 30 kg/s) was 
added to an element in Layer F. The source (rate 

of 15 kg/s) was added to an element in Layer D. 
Four measurement points were chosen to record 
the simulated pressure at different time intervals 
and produce a time series. Three of the 
measurement points were placed in the layers 
containing the sinks and the source (layers C, F 
and D), while the fourth probe was placed in 
layer H. A top view of the multilayer system in 
Figure 9 shows the horizontal positions of the 
probes, sinks, and source.  
 

 
Figure 10. Simulated pressure time-series at each 

probe within the multi-layer system. Plot 
titles indicate the depth of the probes. 

The simulated pressure time-series are shown in 
Figure 10 at each measurement point. The 
similarities in the curves produced by the 
isotropic and anisotropic methods indicate that 
the vertical flow between horizontal layers has 
been correctly implemented. 

CONCLUSIONS 

The result of this work is a fully functional 
addition to TOUGH2 and other simulators in the 
TOUGH family. This new addition includes the 
capability of defining anisotropic conditions 
within the model area. The code for the original 
isotropic method has been preserved, however, 
and it is therefore still possible to run a 
simulation using the unaltered version of 
TOUGH2. A switch was implemented to allow 
the user the option to change between the 
original isotropic method and the new 
anisotropic method. Input without any reference 
to anisotropy will automatically run using the 
original isotropic method. The new anisotropic 
method can only properly handle models where 



 - 8 - 

the anisotropy is defined in a horizontal (xy) 
plane. Vertical flow is modeled using a scheme 
similar to the one used in the original isotropic 
method. 
 
The new implementation has thoroughly tested 
with several examples and the results compared 
to either analytical solutions or other software 
packages. On all occasions, the comparison has 
been favorable.  
 
Although not specifically dealt with in this 
report, it would be beneficial in the future to 
have the three new parameters available in 
iTOUGH2. 
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